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Abstract
The zero modes of the chiral SU(n) WZNW model give rise to an intertwining
quantum matrix algebra A generated by an n × n matrix a = (

ai
α

)
, i, α =

1, . . . , n (with noncommuting entries) and by rational functions of n commuting
elements qpi satisfying

∏n
i=1 qpi = 1, qpia

j
α = a

j
αq

pi+δ
j

i − 1
n . We study a

generalization of the Fock space (F) representation of A for generic q (q not
a root of unity) and demonstrate that it gives rise to a model of the
quantum universal enveloping algebra Uq = Uq(sln), with each irreducible
representation entering F with multiplicity 1. For an integer ŝu(n) height
h (= k + n � n) the complex parameter q is an even root of unity, qh = −1,

and the algebra A has an ideal Ih such that the factor algebra Ah = A/Ih

is finite dimensional. All physical Uq modules—of shifted weights satisfying
p1n ≡ p1 − pn < h—appear in the Fock representation of Ah.

PACS numbers: 02.10.Tq, 11.10.Kk, 13.30.Ly

Introduction

Although the Wess–Zumino–Novikov–Witten (WZNW) model was first formulated in terms
of a (multivalued) action [65], it was originally solved [52] by using axiomatic conformal

6 On leave of absence from: P N Lebedev Physical Institute, Theoretical Department, 117924 Moscow, Leninsky
prospect 53, Russia.
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field theory methods. The two-dimensional (2D) Euclidean Green functions have been
expressed [10] as sums of products of analytic and antianalytic conformal blocks. Their
operator interpretation exhibits some puzzling features: the presence of noninteger (‘quantum’)
statistical dimensions (that appear as positive real solutions of the fusion rules [64]) contrasted
with the local (‘Bose’) commutation relations (CR) of the corresponding 2D fields. The
gradual understanding of both the factorization property and the hidden braid group statistics
(signalled by the quantum dimensions) only begins with the development of the canonical
approach to the model (for a sample of references, see [6, 8, 27, 28, 30, 34–36, 38, 40]) and
the associated splitting of the basic group valued field g : S1 × R → G into chiral parts.
The resulting zero mode extended phase space displays a new type of quantum group gauge
symmetry: on the one hand, it is expressed in terms of the quantum universal enveloping
algebra Uq(G), a deformation of the finite-dimensional Lie algebra G of G—much like a
gauge symmetry of the first kind; on the other, it requires the introduction of an extended,
indefinite metric state space, a typical feature of a (local) gauge theory of the second kind.

Chiral fields admit an expansion into chiral vertex operators (CVO) [63] which diagonalize
the monodromy and are expressed in terms of the currents’ degrees of freedom with ‘zero
mode’ coefficients that are independent of the world sheet coordinate [2, 15, 35, 36, 38]. Such
a type of quantum theory has been studied in the framework of lattice current algebras (see
[3, 16, 28, 30, 40] and references therein). Its accurate formulation in the continuum limit
has only been attempted in the case of G = SU(2) (see [26, 35, 36]). The identification (in
[45]) of the zero mode (Uq) vertex operators ai

α (the ‘Uq oscillators’ of the SU(2) case [35])
with the generators of a quantum matrix algebra defined by a pair of (dynamical) R-matrices
allows us to extend this approach to the case of G = SU(n).

The basic group valued chiral field uA
α (x) is thus expanded in CVO uA

i (x, p)

which interpolate between chiral current algebra modules of weight p = pjv
(j) and

p + v(i), i = 1, . . . , n (in the notation of [45] to be recapitulated in section 1). The operator
valued coefficients ai

α of the resulting expansion intertwine finite-dimensional irreducible
representations (IR) of Uq ≡ Uq(sln) that are labelled by the same weights. For generic q

(q not a root of unity) they generate, acting on a suitably defined vacuum vector, a Fock-like
space F that contains every (finite-dimensional) IR of Uq with multiplicity 1, thus providing
a model for Uq in the sense of [11]. This result (established in section 3.1) appears to be novel
even in the undeformed case (q = 1) giving rise to a new (for n > 2) model of SU(n). In
the important case of q an even root of unity (qh = −1) we have prepared the ground (in
sections 3.2 and 3.3) for a (co)homological study of the 2D (left and right movers’) zero mode
problem [26].

It should be emphasized that displaying the quantum group’s degrees of freedom requires
an extension of the phase space of the models under consideration. Much interesting work
on both physical and mathematical aspects of 2D conformal field theory has been performed
without going to such an extension—see e.g. [7, 10, 31, 52, 55]. The concept of a quantum
group, on the other hand, has emerged in the study of closely related integrable systems and
its uncovering in conformal field theory models has fascinated researchers from the outset—
see e.g. [6, 27, 56, 57]. (For a historical survey of an early stage of this development see
[43]. Significant later developments in different directions—beyond the scope of the present
paper—can be found, e.g., in [13, 32, 54, 58].)

Even within the scope of this paper there remain unresolved problems. We have,
for instance, no operator realization of the extended chiral WZNW model, involving
indecomposable highest weight modules of the Kac–Moody current algebra.

The paper is organized as follows. Section 1 provides an updated summary of recent work
[34–36] on the SU(n) WZNW model. A new point here is the accurate treatment of the path
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dependence of the exchange relations in both the x and the z = eix pictures (proposition 1.3).
In section 2 we carry out the factorization of the chiral field u(x) into CVO and Uq vertex
operators and review relevant results of [45] computing, in particular, the determinant of the
quantum matrix a as a function of the Uq(sln) weights. The discussion of the interrelation
between the braiding properties of 4-point blocks and the exchange relations among zero
modes presented in section 2.2 is new; so are some technical results like proposition 2.3 used
in what follows. Section 3.1 introduces the Fock space (F) representation of the zero mode
algebra A for generic q; the main result is summed up in proposition 3.3. In section 3.2
we compute inner products for the canonical bases in the Uq modules Fp for n = 2, 3. In
section 3.3 we study the kernel of the inner product in F for q an even root of unity,

q = e−i π
h (h = k + n � n). (0.1)

It is presented in the form ĨhF where Ĩh is an ideal in A. We select a smaller ideal Ih ⊂ Ĩh

(introduced in [45]) such that the factor algebra Ah = A/Ih is still finite dimensional but
contains along with each physical weight p (with p1n < h) a weight p̃ corresponding to the
first singular vector of the associated Kac–Moody module (cf remark 2.1).

1. Monodromy extended SU (n) WZNW model: a synopsis

1.1. Exchange relations; path dependent monomials of chiral fields

The WZNW action for a group valued field on a cylindric spacetime R1 × S1 is written as

S = − k

4π

∫
{Tr(g−1∂+g)(g−1∂−g) dx+ dx− + s∗ω(g)} x± = x ± t (1.1a)

where s∗ω is the pullback (s∗g−1 dg = g−1∂+g dx+ + g−1∂−g dx−) of a 2-form ω on G

satisfying

dω(g) = 1
3 Tr(g−1 dg)3. (1.1b)

The general, G = SU(n) valued (periodic) solution, g(t, x + 2π) = g(t, x), of the
resulting equations of motion factorizes into a product of group valued chiral fields

gA
B(t, x) = uA

α (x + t)(ū−1)αB(x − t) (classically, g, u, ū ∈ SU(n)) (1.2a)

where u and ū satisfy a twisted periodicity condition

u(x + 2π) = u(x)M ū(x + 2π) = ū(x)M̄ (1.2b)

with equal monodromies, M̄ = M. The symplectic form of the 2D model is expressed as a
sum of two chiral 2-forms involving the monodromy:

�(2) = �(u,M) − �(ū,M)
(1.3)

�(u,M) = k

4π

(
Tr

(∫ π

−π

∂(u−1 du)u−1 du dx − b−1 db dMM−1

)
+ ρ(M)

)
.

Here b = u(−π) and the 2-form ρ(M) is restricted by the requirement that �(u,M) is closed,
d�(u,M) = 0 which is equivalent to

dρ(M) = 1
3 Tr(dMM−1)3 (1.4a)

(in other words, ρ satisfies the same equation (1.1b) as ω).
Such a ρ can only be defined locally—in an open dense neighbourhood of the identity of

the complexification of SU(n) to SL(n, C). An example is given by

ρ(M) = Tr
(
M−1

+ dM+M
−1
− dM−

)
(1.4b)



5500 P Furlan et al

where M± are the Gauss components of M (which are well defined for Mnn �= 0 �=
det

(
Mn−1n−1 Mn−1n

Mnn−1 Mnn

)
etc),

M = M+M
−1
− M+ = N+D M−1

− = N−D (1.5)

N+ =


1 f1 f12 . . .

0 1 f2 . . .

0 0 1 . . .

. . . . . . . . . . . .

 N− =


1 0 0 . . .

e1 1 0 . . .

e21 e2 1 . . .

. . . . . . . . . . . .

 D = (
dαδ

α
β

)
(1.6)

and the common diagonal matrix D has unit determinant: d1d2 · · · dn = 1. Different solutions
ρ of (1.4a) correspond to different non-degenerate solutions of the classical Yang–Baxter
equation [34, 40].

The closed 2-form (1.3) on the space of chiral variables u, ū,M is degenerate. This fact
is related to the non-uniqueness of the decomposition (1.2a): g(t, x) does not change under
constant right shifts of the chiral components, u → uh, ū → ūh, h ∈ G. Under such shifts
the monodromy changes as M → h−1Mh (see also the discussion of this point in [9]). We
restore non-degeneracy by further extending the phase space, assuming that the monodromies
M and M̄ of u and ū are independent so that the left and the right sectors completely decouple.
As a result, monodromy invariance in the extended phase space is lost since M and M̄ satisfy
Poisson bracket relations of opposite sign (due to (1.3)) and hence cannot be identified. Single-
valuedness of g(t, x) can only be recovered in a weak sense, when g is applied to a suitable
subspace of ‘physical states’ in the quantum theory [25, 26, 35, 36].

We require that quantization respects all symmetries of the classical chiral theory. Apart
from conformal invariance and invariance under periodic left shifts the (u,M) system admits
a Poisson–Lie symmetry under constant right shifts [4, 34, 60] which gives rise to a quantum
group symmetry in the quantized theory. The quantum exchange relations so obtained
[27, 28, 30, 34–36, 40],

u2(y)u1(x) = u1(x)u2(y)R(x − y) ū1(x)ū2(y) = ū2(y)ū1(x)R(x − y) (1.7)

(for 0 < |x − y| < 2π) can also be written as braid relations:

Pu1(y)u2(x) = u1(x)u2(y)R̂(x − y) (1.7a)

ū−1
1 (y)ū−1

2 (x)P = R̂−1(x − y)ū−1
1 (x)ū−1

2 (y) ⇔ ū1(x)ū2(y)P = ū2(y)ū1(x)R̂(x − y).

(1.7b)

Here R(x) is related to the (constant, Jimbo) SL(n)R-matrix [50] by

R(x) = Rθ(x) + PR−1Pθ(−x) (1.8a)

R
α1α2
β1β2

= q̄
1
n

(
δ

α1α2
β1β2

qδα1α2 + (q − q̄)δ
α1α2
β2β1

θα1α2

)
(1.8b)

where

δ
α1α2
β1β2

= δ
α1
β1

δ
α2
β2

θαβ =
{

1 if α > β

0 if α � β
q̄ := q−1 (1.8c)

P stands for permutation of factors in V ⊗ V, V = Cn, while R̂ is the corresponding braid
operator:

R̂ = RP P(X|1〉Y|2〉) = X|2〉Y|1〉 (1.9a)
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R̂(x) = R(x)P =
{

R̂ for x > 0

R̂
−1

for x < 0.
(1.9b)

We use throughout the tensor product notation of Faddeev et al [29]: u1 = u ⊗ 1I,
u2 = 1I ⊗ u are thus defined as operators in V ⊗ V.

Restoring all indices we can write equation (1.7a) as

uB
α (y)uA

β (x) = uA
σ (x)uB

τ (y)R̂(x − y)στ
αβ . (1.7c)

Whenever dealing with a tensor product of three or more copies of V we shall write Rij to
indicate that R acts non-trivially on the ith and j th factors (and reduces to the identity operator
on all others).

Remark 1.1. The operator R̂ (1.9a) coincides with R̂21 = PR̂12P (P = P12) in the notation
of [29] and [45]. We note that if R̂ii+1 satisfy the Artin braid relations then so do R̂i+1i ; we
have, in particular,

R̂12R̂23R̂12 = R̂23R̂12R̂23 ⇔ R̂32R̂21R̂32 = R̂21R̂32R̂21. (1.10)

Indeed, the two relations are obtained from one another by acting from left and right on both
sides with the permutation operator P13 = P12P23P12 = P23P12P23 (=P31) and taking into
account the identities

P13R̂12P13 = R̂32 P13R̂23P13 = R̂21. (1.11)

Here we shall stick, following [34–36], to the form (1.7), (1.9) of the basic exchange relations.
Note however that (1.1a) involves a change of sign in the WZ term (as compared to [34–36])
which yields the exchange of the x+ and x− factors in (1.2a) and is responsible for the sign
change in the phase of q (0.1).

The multivaluedness of chiral fields requires a more precise formulation of (1.7). To give
an unambiguous meaning to such exchange relations we shall proceed as follows.

Energy positivity implies that for any l > 0 the vector valued function

�(ζ1, . . . , ζl) = u1(ζ1) · · · ul(ζl)|0〉
is (single valued) analytic on a simply connected open subset

{ζj = xj + iyj ; |xj | < π, j = 1, . . . , l; yj < yj+1, j = 1, . . . , l − 1}
(xjk := xj − xk) of the manifold Cl\Diag where Diag is defined as the partial diagonal set
in Cl : Diag = {(ζ1, . . . , ζl), ζj = ζk for some j �= k}.

Introduce (exploiting reparametrization invariance—cf [39]) the analytic (z-) picture
fundamental chiral field

ϕ(z) = e−i�ζ u(ζ ) z = eiζ � = n2 − 1

2hn
(1.12)

� standing for the conformal dimension of u, and note that the variables zj are radially ordered
in the domain Ol :

Ol = {zj = e−yj +ixj ; |zj | > |zj+1|, j = 1, . . . , l − 1; |arg zj | < π, j = 1, . . . , l}. (1.13)

Remark 1.2. The time evolution law

eitL0u(x) e−itL0 = u(x + t) (1.14a)

for the ‘real compact picture’ field u(x) implies that

eitL0ϕ(z) e−itL0 = eit�ϕ(z eit ). (1.14b)
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Energy positivity, combined with the pre-factor in (1.12), guarantees that the state vector
ϕ(z)|0〉 is a single valued analytic function of z in the neighbourhood of the origin (in fact,
for a suitably defined inner product, its Taylor expansion around z = 0 is norm convergent for
|z| < 1—see [22]).

The vector valued functions

�(z1, . . . , zl) = ϕ1(z1) · · · ϕl(zl)|0〉 (1.15a)

and

�(ζ1, . . . , ζl) = u1(ζ1) · · · ul(ζl)|0〉 =
∏
j

ei�ζj �(eiζ1 , . . . , eiζl ) (1.15b)

are both analytic in their respective domains (cf (1.13)) and are real analytic (and still single
valued) on the parts

{ζj = xj (⇒ zj = eixj ), x1 > x2 > · · · > xl, x1l < π}
of their physical boundaries.

The following proposition allows us to continue these boundary values through the domain
Ol to any other ordered set of xj (the result will be a path dependent multivalued function for
{z1, . . . , zl} ∈ Cl\Diag).

Proposition 1.3. Let z1 = eix1 , z2 = eix2 , 0 < x12 < 2π ; the path exchanging x1 and x2 (and
hence z1 and z2),

C12 : ζ1,2(t) = e−i π
2 t

(
x1,2 cos

π

2
t + ix2,1 sin

π

2
t
)

0 � t � 1 (1.16a)

turns clockwise around the middle of the segment (x1, x2):

ζ1(t) + ζ2(t) = x1 + x2 ζ12(t) := ζ1(t) − ζ2(t) = x12 e−iπt . (1.16b)

Furthermore, if za(t) = eiζa(t), a = 1, 2, then

|z1(t)|2 = ex12 sin πt = |z2(t)|−2 > 1 for 0 < t < 1 (1.16c)

so that the pair (z1(t), z2(t)) satisfies the requirement (1.13) for two consecutive arguments
in the analyticity domain Ol . For 0 < x21 < 2π one has to change the sign of t (and thus the
orientation of the path (1.16)) in order to preserve the inequality |z1(t)| > |z2(t)|.
Proof. All assertions are verified by a direct computation; in particular, (1.16b) implies that

2 Im ζ2(t) = x12 sin πt = −2 Im ζ1(t) (1.16d )

which yields (1.16c). �

We note that for ζ1,2 given by (1.16a) one has |ζ1(t)|2 + |ζ2(t)|2 = x2
1 + x2

2 .

Proposition 1.3 supplements (1.12) in describing the relationship (the essential equivalence)
between the real compact and the analytic picture allowing us to use each time the one better
adapted to the problem under consideration.

We are now prepared to give an unambiguous formulation of the exchange relations (1.7).
Let �12u1(x2)u2(x1) (�12ϕ1(z2)ϕ2(z1)) be the analytic continuation of u1(x1)u2(x2)

(respectively ϕ1(z1)ϕ2(z2)) along a path in the homotopy class of C12 (1.16). Then
equation (1.7a) should be substituted by

P�12u1(x2)u2(x1) = u1(x1)u2(x2)R̂
(1.7d )

P�12ϕ1(z2)ϕ2(z1) = ϕ1(z1)ϕ2(z2)R̂
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for zj = eixj , 0 < x12 < 2π. For 0 < x21 < 2π and a positively oriented path one should

replace R̂ by R̂
−1

.

We recall (see [36]) that the quantized u (and g) cannot be treated as group elements. We
can just assert that the operator product expansion of u with its conjugate only involves fields
of the family (or, rather, the Verma module) of the unit operator. The relation

u(x + 2π) = e2π iL0u(x) e−2π iL0 = u(x)M (1.17)

on the other hand, gives (by (1.14) for � given by (1.12))(
Mα

β − q
1
n
−nδα

β

)|0〉 = 0; (1.18a)

hence, in order to preserve the condition d1 · · · dn = 1 for the product of diagonal elements of
M+ and M−1

− we should substitute (1.5) by its quantum version

M = q
1
n
−nM+M

−1
− . (1.18b)

The tensor products of Gauss components, M2±M1±, of the monodromy matrix commute
with the braid operator,

[R̂,M2±M1±] = 0 = [R̂, M̄1±M̄2±] (1.19a)

(and hence, with its inverse) but

R̂M2−M1+ = M2+M1−R̂ R̂M̄1+M̄2− = M̄1−M̄2+R̂ (1.19b)

while the exchange relations between u and M± can be written in the form (cf [34–36])

M1±Pu1(x) = u2(x)R̂
∓1

M2± M̄2±P ū2(x) = ū1(x)R̂±M̄1±. (1.20)

The left and right sectors decouple completely as a consequence of the separation of variables
in the classical extended phase space,

[M1, ū2] = [u1, ū2] = [M1, M̄2] = [u1, M̄2] = 0. (1.21)

The above relations for the left sector variables (u,M) are invariant under the left coaction of
SLq(n),

uA
α (x) → (T −1)βα ⊗ uA

β ≡ (uA(x)T −1)α Mα
β → T α

γ (T −1)δβ ⊗ M
γ

δ ≡ (T MT −1)αβ

(1.22a)

while the right sector is invariant under its right coaction,

ūα
A(x) → ū

β

A(x) ⊗ (T̄ )αβ = (T̄ ūA(x))α M̄
α

β → M̄
γ

δ ⊗ T̄ α
γ (T̄ −1)δβ ≡ (T̄ M̄T̄ −1)αβ

(1.22b)

provided

R̂T2T1 = T2T1R̂ R̂T̄1T̄2 = T̄1T̄2R̂ (1.23)

where we have used concise notation on the right-hand side of (1.22). The elements T α
β of

T commute with u,M, ū and M̄ . The fact that the maps (1.22a) and (1.22b) are respectively
left and right coactions [45] can be proved by checking the comodule axioms, see e.g. [1, 48].
There are corresponding transformations of the elements of M± and M̄±.

Thus the Latin and Greek indices of u and ū in (1.2a) transform differently: A, B
correspond to the (undeformed) SU(n) action while α is a quantum group index.

It is known, on the other hand, that the first equations in (1.19a) and (1.19b) for the
matrices M± are equivalent to the defining relations of the (‘simply connected’ [21]) quantum
universal enveloping algebra (QUEA) Uq(sln) that is paired by duality to Fun(SLq(n))
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(see [29]). The Chevalley generators of Uq are related to the elements di, ei , fi of the
matrices (1.5) by ([29]; see also [36])

di = q�i−1−�i (i = 1, . . . , n,�0 = 0 = �n)

ei = (q̄ − q)Ei fi = (q̄ − q)Fi

(1.24a)

(q̄ − q)f12 = f2f1 − qf1f2 = (q̄ − q)2(F2F1 − qF1F2) etc
(1.24b)

(q̄ − q)e21 = e1e2 − qe2e1 = (q̄ − q)2(E1E2 − qE2E1) etc.

Here �i are the fundamental co-weights of sl(n) (related to the co-roots Hi by Hi =
2�i − �i−1 − �i+1); Ei and Fi are the raising and lowering operators satisfying

[Ei, Fj ] = [Hi]δij

(
[H ] := qH − q̄H

q − q̄

)
(1.25a)

[Ei,Ej ] = 0 = [Fi, Fj ] for |j − i| � 2

q�iEj = Ejq
�i+δij q�iFj = Fjq

�i−δij

(1.25b)
[2] XiXi±1Xi = Xi±1X

2
i + X2

i Xi±1 for X = E,F.

We note that the invariance under the coaction of SLq(n) (1.22a) is, in effect, equivalent to
the covariance relations

qHiuα(x)q̄Hi = qδi
α−δi+1

α uα(x) [Ei, uα] = δi+1
α uα−1(x)qHi

(1.26)
Fiuα(x) − qδi+1

α −δi
α uα(x)Fi = δi

αuα+1(x).

1.2. R-matrix realizations of the Hecke algebra; quantum antisymmetrizers

The R-matrix for the quantum deformation of any (simple) Lie algebra can be obtained as a
representation of Drinfeld’s universal R-matrix [23]. In the case of the defining representation
of SU(n) the braid operator (1.9) gives rise, in addition, to a representation of the Hecke
algebra. This fact, exploited in [45], is important for our understanding of the dynamical
R-matrix. We recall the basic definitions.

For any integer k � 2 let Hk(q) be an associative algebra with generators 1, g1, . . . , gk−1,
depending on a non-zero complex parameter q, with defining relations

gigi+1gi = gi+1gigi+1 for 1 � i � k − 2 (if k � 3) (1.27a)

gigj = gjgi for |i − j | �= 1 1 � i, j � k − 1 (1.27b)

g2
i = 1 + (q − q̄)gi for 1 � i � k − 1 q̄ := q−1. (1.27c)

The SL(n) braid operator R̂ (see (1.8b), (1.8c) and (1.9a)) generates a representation
ρn : Hk(q) → End(V ⊗k), V = Cn for any k � 2,

ρn(gi) = q
1
n R̂ii+1 or [ρn(gi)]±1 = q±11I − Ai (1.28a)

where A is the q-antisymmetrizer

A
α1α2
β1β2

= qεα2α1 δ
α1α2
β1β2

− δ
α1α2
β2β1

qεα2α1 =


q̄ for α1 > α2

1 for α1 = α2

q for α1 < α2

(1.28b)

(Ai = [2]A(i+1,i) in the—suitably extended—notation of [45]; note that for q2 = −1, [2] =
0 the ‘normalized antisymmetrizer’ A(i+1,i) is ill-defined while Ai still makes sense).
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Equations (1.27) are equivalent to the following relations for the antisymmetrizers Ai :

AiAi+1Ai − Ai = Ai+1AiAi+1 − Ai+1 (1.29a)

AiAj = AjAi for |i − j | �= 1 (1.29b)

A2
i = [2]Ai. (1.29c)

Remark 1.3. We can define (see, e.g., [44]) the higher antisymmetrizers Aij , i < j

inductively, setting

Aij+1 := Aij (q
j−i+1 − qj−iρn(gj ) + · · · + (−1)j−i+1ρn(gjgj−1 · · · gi))

= Ai+1j+1(q
j−i+1 − qj−iρn(gi) + · · · + (−1)j−i+1ρn(gigi+1 · · · gj )). (1.30a)

They can also be expressed in terms of antisymmetrizers only:

Aii+1 = Ai

Aij+1 = 1

[j − i]!
(AijAjAij − [j − i][j − i]!Aij) (1.30b)

= 1

[j − i]!
(Ai+1j+1AiAi+1j+1 − [j − i][j − i]!Ai+1j+1).

The term ‘q-antisymmetrizer’ is justified by the relation

(ρn(gi) + q̄)A1j = 0 = A1j (ρn(gi) + q̄) (1.31a)

or
A1iA1j = [i]!A1j for 1 < i � j. (1.31b)

The dependence of the representation ρn on n (for G = SU(n)) is manifest in the
relations

A1n+1 = 0 rank A1n = 1. (1.32)

A1n can be written as a (tensor) product of two Levi-Civita tensors,

A1n = E |1...n〉E〈1...n| E〈1...n|E |1...n〉 = [n]! (1.33)

the second equation implying summation in all n repeated indices. We can (and shall) choose
the covariant and the contravariant E-tensors equal,

Eα1α2...αn = Eα1α2...αn
= q̄n(n−1)/4(−q)�(σ ) for σ =

(
n, . . . , 1

α1, . . . , αn

)
(∈Sn); (1.34)

here �(σ ) is the length of the permutation σ . (Note the difference between (1.34) and expression
(2.5) of [45] for E which can be traced back to our present choice (1.28) for ρn(gi)—our R̂ii+1

corresponding to R̂i+1i of [45]—cf remark 1.1.)
We recall for further reference that the first equation (1.32) is equivalent to either of the

following two relations,

A1nA2n+1A1n = ([n − 1]!)2A1n (1.35a)

A2n+1A1nA2n+1 = ([n − 1]!)2A2n+1 (1.35b)

(see lemma 1.1 of [45]); this agrees with (1.33) and (1.34) since
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E〈2...n+1|E |1...n〉 = (−1)n−1[n − 1]!δ|1〉
〈n+1| (1.36a)

E〈1...n|E |2...n+1〉 = (−1)n−1[n − 1]!δ|n+1〉
〈1| . (1.36b)

We shall encounter in section 2 another, ‘dynamical’, Hecke algebraic representation of the
braid group which has the same form (1.28a) but with a ‘dynamical antisymmetrizer’, i.e.
Ai = Ai(p), a (rational) function of the q-weights (qp1 , . . . , qpn) which satisfies a finite
difference (‘dynamical’) version of (1.29a).

1.3. Barycentric basis, shifted su(n) weights; conformal dimensions

Let {v(i), i = 1, . . . , n} be a symmetric ‘barycentric basis’ of (linearly dependent) real traceless
diagonal matrices (thus {v(j)} span a real Cartan subalgebra h ⊂ sl(n)):

(v(i))
j

k =
(

δij − 1

n

)
δ

j

k ⇒
n∑

i=1

v(i) = 0 (v(i)|v(j)) = δij − 1

n
. (1.37)

(The inner product of two matrices is given by the trace of their product.) Analogously,
the n ‘barycentric’ components pi of a vector in the (n − 1)-dimensional dual space h∗ are
determined up to a common additive constant and can be fixed by requiring

∑n
i=1 pi = 0.

Specifying thus the bases, we can make any such vector in h∗ correspond to a unique diagonal
matrix p ∈ h,

p =
n∑

i=1

piv
(i) =


p1 0 . . . 0
0 p2 . . . 0
. . . . . . . . . . . .

0 0 . . . pn

 n∑
i=1

pi = 0 (1.38)

and vice versa. In particular, the simple sl(n) roots αi and the fundamental sl(n) weights
�(j), i, j = 1, . . . , n − 1, satisfying (�(j)|αi) = δ

j

i , correspond to the following diagonal
matrices (denoted by the same symbols),

αi = v(i) − v(i+1) �(j) =
j∑

�=1

v(�) ≡
(

1 − j

n

) j∑
�=1

v(�) − j

n

n∑
�=j+1

v(�) (1.39)

respectively. Expanding p (1.38) in the basis of fundamental weights,

p =
n∑

i=1

piv
(i) =

n−1∑
j=1

pjj+1�
(j) pij := pi − pj

one can characterize a shifted dominant weight

p = � + ρ � =
n−1∑
i=1

λi�
(i) λi ∈ Z+ ρ =

n−1∑
i=1

�(i) = 1

2

∑
α>0

α (1.40)

(ρ is the sl(n) Weyl vector) by the relations

pii+1 = λi + 1 ∈ N i = 1, 2, . . . , n − 1. (1.41)

The non-negative integers λi = pii+1 − 1 count the number of columns of length i in the
Young tableau that corresponds to the IR of highest weight p of SU(n)—see, e.g., [33].
Conversely, pi satisfying (1.38) can be expressed in terms of the integer valued differences
pij as pi = 1

n

∑n
j=1 pij .
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Dominant weights p also label highest weight representations of Uq . For integer heights
h (�n) and q satisfying (0.1) these are (unitary) irreducible if (n−1�) p1n � h. The quantum
dimension of such an IR is given by (see, e.g., [18])

dq(p) =
n−1∏
i=1

 1

[i]!

n∏
j=i+1

[pij ]

 (� 0 for p1n = p1 − pn � h). (1.42)

For q → 1 (h → ∞), [m] → m we recover the usual (integral) dimension of the IR under
consideration.

The chiral observable algebra of the SU(n) WZNW model is generated by a local
current j (x) ∈ su(n) of height h. In contrast to gauge dependent charged fields like u(x),
it is periodic, j (x + 2π) = j (x). The quantum version of the classical field–current relation
ij (x) = ku′(x)u−1(x) is the operator Knizhnik–Zamolodchikov equation [52] in which the
level k gets a quantum correction (equal to the dual Coxeter number n of su(n)):

hu′(x) = i : j (x)u(x) : h = k + n. (1.43)

Here the normal product is defined in terms of the current’s frequency parts:

ju := j(+)u + uj(−) j(+)(x) =
∞∑

ν=1

J−ν eiνx j(−)(x) =
∞∑

ν=0

Jν e−iνx . (1.44)

The canonical chiral stress energy tensor and the conformal energy L0 are expressed in terms
of j and its modes by the Sugawara formula:

T (x) = 1

2h
Tr : j 2 : (x) ⇒ L0 =

∫ π

−π

T (x)
dx

2π
= 1

2h
Tr

(
J 2

0 + 2
∞∑

ν=1

J−νJν

)
. (1.45)

Energy positivity implies that the state space of the chiral quantum WZNW theory is a direct
sum of (height h) ground state modules Hp of the Kac–Moody algebra ŝu(n) each entering
with a finite multiplicity:

H =
⊕

p

Hp ⊗ Fp dim Fp < ∞. (1.46)

We do not fix at this point the structure of the internal spaces Fp. In the simpler but
unrealistic case of generic q explored in section 3.1 each Fp is an irreducible Uq module
and the direct sum ⊕p Fp carries a Fock-type representation of the intertwining quantum
matrix algebra A introduced below. The irreducibility property fails, in general, for q a root
of unity (as discussed in section 3.3). It is conceivable that in this (realistic) case the label
p should be substituted by the set of eigenvalues of the Uq Casimir operators which are
symmetric polynomials in qpi . (In the case of Uq(sl2) the single Casimir invariant depends on
qp + q̄p, p ≡ p12, which suggests that p and 2h − p should refer to the same internal space.)

Each Hp in the direct sum (1.46) is a positive energy graded vector space,

Hp =
∞⊕

ν=0

Hν
p (L0 − �(p) − ν)Hν

p = 0 dimHν
p < ∞. (1.47)

It follows from here and from the current algebra and Virasoro CR

[Jν, L0] = νJν [Lν,L0] = νLν (ν ∈ Z) (1.48)

that JνH0
p = 0 = LνH0

p for ν = 1, 2, . . . . Furthermore, H0
p spans an IR of su(n)

of (shifted) highest weight p and dimension d1(p) (the q → 1 limit of the quantum
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dimension (1.42)). The conformal dimension (or conformal weight) �(p) is proportional
to the (su(n)-) second-order Casimir operator |p|2 − |ρ|2:

2h�(p) = |p|2 − |ρ|2 = 1

n

∑
1�i<j�n

p2
ij − n(n2 − 1)

12
. (1.49)

Note that the conformal dimension �(p(0)) of the trivial representation

p(0) = {p; pii+1 = 1, 1 � i � n − 1} (1.50)

is zero. This follows from the identity

n|p(0)|2 =
n−1∑
i=1

n∑
j=i+1

(
p

(0)
ij

)2

=
n−1∑
i=1

n∑
j=i+1

(j − i)2 =
n−1∑
i=1

n − i

6
(2n − 2i + 1)(n − i + 1)

= n2(n2 − 1)

12
= n|ρ|2 ⇒ |p(0)|2 − |ρ|2 = 0. (1.51)

The eigenvalues of the braid operator R̂ (1.9), (1.28) are expressed as products of exponents
of conformal dimensions. Let indeed p(1) be the weight of the defining n-dimensional IR of
su(n):

p
(1)
12 = 2 p

(1)
ii+1 = 1 for i � 2 (1.52)

while p(s) and p(a) are the weights of the symmetric and the antisymmetric squares of p(1),
respectively,

p
(a)
12 = 1

(=p
(a)
ii+1 for i � 3

)
p

(a)
23 = 2 (for n � 3)

(1.53)
p

(s)

12 = 3 p
(s)

ii+1 = 1 for n − 1 � i � 2.

The corresponding conformal dimensions � = �(p(1)),�a = �(p(a)) and �s = �(p(s)) are
computed from (1.49):

2h� = |p(1)|2 − |ρ|2 = n2 − 1

n

2h�a = |p(a)|2 − |ρ|2 = 2
n + 1

n
(n − 2) (1.54)

2h�s = |p(s)|2 − |ρ|2 = 2
n − 1

n
(n + 2).

The two eigenvalues of R̂ (evaluated from the nonvanishing 3-point functions that involve two
fields u(x) (or ϕ(z)—see (1.12)) of conformal weight �,

eiπ(2�−�s) = q
n−1
n −eiπ(2�−�a) = −q̄

n+1
n (1.55)

appear with multiplicities

ds =
(

n + 1

2

)
da =

(
n

2

)
(da + ds = n2) (1.56)

respectively. The deformation parameter

q
1
n = e−i π

nh (1.57)
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computed from here, satisfies (0.1) as anticipated. For q → 1 the eigenvalues (1.55) of R̂ go
into the corresponding eigenvalues ±1 of the permutation matrix P ; furthermore,

det R̂ = det P = (−1)da =
{−1 for n = 2, 3 mod 4

1 for n = 0, 1 mod 4.
(1.58)

Equation (1.55) illustrates the early observation (see, e.g., [5]) that the quantum group is
determined by basic characteristics (critical exponents) of the underlying conformal field
theory.

2. CVO and Uq vertex operators: monodromy and braiding

2.1. Monodromy eigenvalues and Fp intertwiners

The labels p of the two factors in each term of the expansion (1.46) have different nature.
While Hp is a ground state current algebra module for which p stands for the shifted weight
pKM (such that

(
pKM

i − pi

)
Hp = 0) of the ground state representation of the ŝu(n) current

algebra of minimal conformal dimension (or energy) �(p),Fp is a Uq module (the quantum
group commuting with the currents). We introduce, accordingly, the field of rational functions
of the commuting operators qp̂i (giving rise to an Abelian group) such that

n∏
i=1

qp̂i = 1 (qp̂i − qpi )Fp = 0 [qp̂i , j (x)] = 0 (2.1)

with pij obeying the condition (1.41) for dominant weights.
We shall split the SU(n) × Uq(sln) covariant field u(x) = (

uA
α (x)

)
into factors which

intertwine separately different Hp and Fp spaces.
A CVO uj (x, p) (for p ≡ pKM) is defined as an intertwining map between Hp and

Hp+v(j) (for each p in the sum (1.46)). Noting that Hp is an eigenspace of e2π iL0 ,

Spec L0|Hp
⊂ �h(p) + Z+ ⇒ {e2π iL0 − e2π i�h(p)}Hp = 0 (2.2)

we deduce that uj (x, p) is an eigenvector of the monodromy automorphism,

uj (x + 2π, p) = e2π iL0uj (x, p) e−2π iL0 = uj (x, p)µj (p) (2.3a)

where, using (1.49) and the relation (p|v(j)) = pj , we find

µj(p) := e2π i{�h(p+v(j))−�h(p)} = q
1
n
−2pj −1. (2.3b)

The monodromy matrix (1.5) is diagonalizable whenever its eigenvalues (2.3b) are all different.
In particular, for the ‘physical IR’, characterized by p1n < h,M is diagonalizable. The
exceptional points are those p for which there exists a pair of indices 1 � i < j � n such that
q2pij = 1, since we have

µi(p)

µj(p)
= q−2pij . (2.3c)

According to (1.42) all such ‘exceptional’ Fp have zero quantum dimension ([pij ] = 0).

Remark 2.1. The simplest example of a non-diagonalizableM appears for n = 2, p (≡p12) =
h when µ1(h) = −q̄

1
2 = µ2(h). In fact any ŝu(2) module Hh−�, 0 � � � h − 1 contains a

singular (invariant) subspace isomorphic to Hh+� [51]; note that, for p = h − �, p̃ = h + �,

µ1(p) = −q�− 1
2 = µ2(p̃) µ2(p) = −q̄�+ 1

2 = µ1(p̃) (2.3d )

(cf (2.3b)). It turns out that, in general,

µ1(p) = µn(p̃) µn(p) = µ1(p̃) µi(p) = µi(p̃) i = 2, 3, . . . , n − 1. (2.3e)
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Indeed, if |HWV〉p is the highest weight vector in the minimal energy subspace H0
p of the

ŝu(n) module Hp and θ = α1 + · · · + αn−1 is the su(n) highest root, then the corresponding
singular vector can be written in the form [41](
Eθ

−1

)h−p1n |HWV〉p ∼ |HWV〉p̃
p̃1 = h + pn p̃n = −h + p1 p̃i = pi i = 2, 3, . . . , n − 1 (2.4)

�(p̃) − �(p) = h − p1n ∈ Z.

To prove (2.3e) one only has to insert p̃i into (2.3b). One concludes that the monodromy M

always has coinciding eigenvalues on Fp ⊕Fp̃ (suggesting the inclusion of this direct sum into
a single indecomposable Uq module, cf [32]). The non-diagonalizability of the monodromy
matrix in the extended state space may require a modification of the splitting (2.7) below for
p1n � h. The study of this question is, however, beyond the scope of the present paper.

The CVO uj only acts on the factor Hp of the tensor product Hp ⊗ Fp in (1.46); hence,
it shifts the Kac–Moody operators pKM

i but not the quantum group ones:

[
pKM

i , uj

] =
(

δij − 1

n

)
uj [qp̂i , uj ] = 0

((
qpKM

i − qp̂i
)
H = 0

)
. (2.5)

We shall skip from now on (as we did in equations (2.3) and (2.4)) the superscript KM of the
argument p of the CVO uj as well as the hat on the quantum group operators qpi since the
distinction between the two p labels should be obvious from the context (and does not matter
when acting on the diagonal chiral state space (1.46)).

The intertwining quantum matrix algebra A is generated by qpi and by the elements of
the matrix a = (

a
j
α

)
, j, α = 1, . . . , n which shift p (commuting with pKM),

aj
α : Fp → Fp+v(j) qpi aj

α = aj
αq

pi+δ
j

i − 1
n . (2.6)

The SU(n) × Uq(sln) covariant field uA
α (x) is related to the CVO uA

j (x, p) by the so-called
vertex-IRF (interaction-round-a-face) transformation [56]

uA
α (x) = uA

i (x, p) ⊗ ai
α. (2.7)

According to (2.7), a
j
α act on the second factor of (1.46) only and hence commute with the

currents and with the Virasoro generators.
It will be proved in section 3.1 that the Fock space representation of A in ⊕pFp for

generic q provides a model of Uq. The exchange relations of ai
α (displayed in section 2.3

below), combined with (2.7) and with the defining property a
j
α|0〉 = 0 for j > 1 of the

vacuum vector |0〉 (the unique normalized state in Fp(0) for p(0) given by (1.50)) yield, in
particular, the relation

ajFp = 0 for j > 1 and pj−1 = pj + 1. (2.8)

The meaning of (2.6), (2.8) can be visualized as follows. With each finite-dimensional
representation of Uq with (dominant) highest weight p we associate, as usual, a Young tableau
Y[λ1,...,λn−1] with λi (=pii+1 − 1) columns of height i (=1, 2, . . . , n − 1). Then aj adds a box
to the j th row of the Young tableau of p (provided pj−1 > pj + 1 for j = 2, . . . , n). Here are
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some examples for n = 4:

aj |0〉 = δ
j

1 a1 = a2 =

a3 = 0 a4 = cE〈1234| .

The exchange relations of ai
α with the Gauss components (1.5) of the monodromy are

dictated by (1.20),

M1±Pa1 = a2R̂
∓1M2± (2.9)

and reflect, in view of (1.24a), the Uq covariance of a:[
Ea, a

i
α

] = δaα−1a
i
α−1q

Ha a = 1, . . . , n − 1 (2.10a)[
qHaFa, a

i
α

] = δaαq
Haai

α+1 (2.10b)

qHaai
α = ai

αq
Ha+δaα−δaα−1 . (2.10c)

The transformation law (2.10) expresses the coadjoint action of Uq . Comparing (1.2b), (2.3)
and (2.7) we deduce that the zero mode matrix a diagonalizes the monodromy (whenever the
quantum dimension (1.42) does not vanish); setting

aM = Mpa (2.11a)

we find (from the above analysis of equation (2.3)) the implication

dq(p) �= 0 ⇒ (Mp)ij = δi
jµj (p − v(j)) µj (p − v(j)) = q−2pj +1− 1

n . (2.11b)

It follows from (2.11) that the subalgebra of A generated by the matrix elements of M

commutes with all qpi . As recalled in (1.5), (1.6) and (1.24), the Gauss components of M are
expressed in terms of the Uq generators. We can thus state that the centralizer of qpi in A is
compounded by Uq and qpi .

2.2. Exchange relations among zero modes from braiding properties of 4-point blocks

The exchange relations (1.7a) for u given by (2.7) can be translated into quadratic exchange
relations for the ‘Uq vertex operators’ ai

α provided that the CVO u(x, p) satisfy standard braid
relations: if 0 < x − y < 2π, then

�xyu
B
i (y, p + v(j))uA

j (x, p) = uA
k (x, p + v(l))uB

l (y, p)R̂(p)klij ; (2.12)

if 0 < y − x < 2π , then R̂(p) on the right-hand side should be substituted by the inverse
matrix (cf (1.9b)). Indeed, consistency of (2.12) with (1.7d) on the diagonal state space H
(1.46) requires that

R̂(p)±1a1a2 = a1a2R̂
±1 (2.13)

where p in R̂(p) should be understood as an operator, see (2.1) and (2.6).
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It has been proved in [47] that equation (2.12) is in fact a consequence of the properties
of the chiral 4-point function

w
(4)
p′p = 〈0|φp′∗(z1)ϕ(z2)ϕ(z3)φp(z4)|0〉

=
∑
i,j

S ij (p)sij (z1, . . . , z4; p)δp′,p+v(i)+v(j)
(2.14)

(we assume that the vacuum vector is given by the tensor product of the vacuum vectors for
the affine and quantum matrix algebras). Here φp(z) and φp′∗(z) are general z-picture primary
chiral fields of weights p and p′∗, respectively, where p∗ is the weight conjugate to p,

p → p∗ = {p∗
i = −pn+1−i} ⇔ p∗

i i+1 = pn−i n+1−i (2.15)

ϕ(z) is the ‘step operator’ (1.12) (of weight p(1), see (1.52), i.e., ϕ(z) ≡ φp(1) (z)), S ij (p) is
the zero mode correlator

S ij (p) := 〈p + v(i) + v(j)|aiaj |p〉 (2.16)

while sij is the conformal block expressed in terms of a function of the cross ratio η:

sij (z1, z2, z3, z4; p) := 〈0|φp(0)

p′∗ (z1, p
′)ϕi(z2, p + v(j))ϕj (z3, p)φp

p(z4, p
(0))|0〉

= Dij (z1, z2, z3, z4; p)fij (η, p). (2.17)

Here we use the standard notation

φp2
p (z, p1) : Hp1

φp−→ Hp2

for a CVO of weight p (so that ϕ�(z, p) ≡ φ
p+v(�)

p(1) (z, p) is the z-picture counterpart of u�(x, p)),

Dij (z1, z2, z3, z4; p) =
(

z24

z12z14

)�(p′)(
z13

z14z34

)�(p)

z−2�
23 η�j−�(1 − η)�a

η = z12z34

z13z24
p′ = p + v(i) + v(j);

�(p) is given by (1.49) and � = �(p(1)) = n2−1
2hn

,�j = �(p + v(j)),�a = (n+1)(n−2)

2hn
(�a is

the dimension (1.54) of the antisymmetric tensor representation of weight p(a) in (1.53)). We
omit here both SU(n) and SLq(n) indices: sij (2.17) (and hence fij ) is an SU(n) invariant
tensor in the tensor product of four IRs, while S ij (p) (2.16) is an SLq(n) invariant tensor.
Only terms for which both p + v(j) and p + v(i) + v(j) are dominant weights contribute to the
sum (2.14). The pre-factor Dij (z1, z2, z3, z4; p) on the right-hand side of (2.17) is fixed, up
to a multiplicative function of η, by the Möbius invariance of fij . The choice of the powers of
η and 1 − η corresponds to extracting the leading singularities (in both s- and u-channels) so
that fij (η, p) should be finite (and non-zero) at η = 0 and η = 1.

We shall sketch the proof of (2.12); the reader could find the details in [47] (see also [62]).
The conformal block sij (2.17) is determined as the SU(n) invariant solution of the

Knizhnik–Zamolodchikov equation [52](
h

∂

∂z2
+
C12

z12
− C23

z23
− C24

z24

)
sij (z1, z2, z3, z4; p) = 0 (2.19a)

satisfying the above boundary conditions. Inserting expression (2.17) for sij , one gets a system
of ordinary differential equations for the Möbius invariant amplitudes fij :(

h
d

dη
− �12

η
+

�23

1 − η

)
fij (η; p) = 0. (2.19b)
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Here Cab =→
ta · →

tb, 1 � a < b � 4 is the Casimir invariant of the corresponding tensor product
of IR of SU(n); in our case ta, a = 1, 2, 3, 4 generate the IR of weights p′∗, p(1), p(1) and p,

respectively. The pre-factor Dij being an SU(n) scalar, SU(n) invariance of sij implies that(
C12 + C23 + C24 +

n2 − 1

n

)
fij = 0 (2.19c)

so that

�12 = C12 + pm + δij +
n2 + n − 4

2n
�23 = C23 +

n + 1

n
(2.19d )

where m = min(i, j).

Our objective is to study the braiding properties of the solution fij of (2.19b) that is
analytic in η (and non-zero) around η = 0.

It is important to observe that the space of invariant SU(n) tensors is in the case at hand at
most two dimensional; this allows us to find a convenient realization of the operators �12,�23

[17, 47]. (In the n = 2 case [20, 61, 66] this can be done even for four general isospins, due
to the simple rules for tensor multiplication in the SU(2) representation ring.)

The existence of a solution of (2.19) is guaranteed whenever the quantum dimension
(1.42) for each weight encountered in (2.14) is positive,

n − 1 � p1n, (p + v(j))1n, p
′
1n < h p′ ≡ p + v(i) + v(j). (2.20)

In fact, for fixed p and p′ in (2.17) and i �= j the 2 × 2 matrix system (2.19b) gives
rise to a hypergeometric equation. Assume, in addition, that p + v(i) is also a dominant
weight. Then both sij and sji will satisfy equation (2.19a) and provide a basis of independent
solutions of that equation (note that the sum in (2.14) reduces to two terms with permuted
i and j ). More precisely, let P23�23sij (z1, z3, z2, z4; p) be the analytic continuation of sij

along a path C23 obtained from C12 (1.16a) by the substitution 1 → 2, 2 → 3 (that is,
C23 = {za(t) = eiζa(t), a = 2, 3; ζ2(t) + ζ3(t) = x2 + x3, ζ23(t) = e−iπtx23, 0 � t � 1}) with
permuted SU(n) indices 2 and 3. It satisfies again equation (2.19a) and hence is a linear
combination of skl(z1, z2, z3, z4; p) with (k, l) = (i, j) and (k, l) = (j, i):

P23�23sij (z1, z3, z2, z4; p) = skl(z1, z2, z3, z4; p)R̂kl
ij (p). (2.21)

Here R̂(p) satisfies the ice condition: its components R̂kl
ij (p) do not vanish only if the

unordered pairs i, j and k, l coincide, i.e.,

R̂kl
ij (p) = akl(p)δk

j δ
l
i + bkl(p)δk

i δ
l
j . (2.22a)

Equation (2.21) is nothing but a matrix element version of (2.12); hence, it yields the exchange
relation (2.13) for i �= j (⇒ k �= l).

For i = j the analytic continuation on the left-hand side of (2.21) reduces to a
multiplication by a phase factor. In this case the space of SU(n) invariant tensors is one
dimensional (since the skewsymmetric invariant vanishes), and so is the space of Uq(s�n)

invariants. The resulting equation for fii(η; p) is of first order:(
h

d

dη
+

2

1 − η

)
fii(η; p) = 0

and is solved by fii (η; p) = cii(p)(1 − η)
2
h . Substituting

z23 → e−iπ z23 ⇒ 1 − η → e−iπ 1 − η

η
Dii → q̄

n+1
n η

2
h Dii

we get

sii
�→ q1− 1

n sii .
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Explicitly, the (4 × 4) (i, j)-block of R̂(p) has the form

R̂(i,j)(pij ) = q̄
1
n


q 0 0 0

0 q
pij

[pij ]
[pij −1]

[pij ] α(pij ) 0

0 [pij +1]
[pij ] α(−pij ) − q̄

pij

[pij ] 0

0 0 0 q

 α(p)α(−p) = 1 (2.22b)

i.e. (cf (2.22a))

q
1
n akl(pkl) = α(pkl)

[pkl − 1]

[pkl]
q

1
n bkl(pkl) = qpkl

[pkl]
for k �= l.

The arbitrariness reflected by α(p) is related to the freedom of choosing the normalization of
the two independent solutions of the hypergeometric equation.

The matrix (2.22b) coincides with that obtained independently in [45] by imposing
consistency conditions on the intertwining quantum matrix algebra of SL(n) type. We shall
display the ensuing properties of R̂(p) in the following subsection.

2.3. The intertwining quantum matrix algebra

Among the various points of view of the Uq(sl2) intertwiners (or ‘Uq vertex operators’) ai
α,

the one which yields an appropriate generalization to Uq(sln) is the so-called ‘quantum 6j

symbol’ R̂(p)-matrix formulation of [2, 15, 30, 56]. The n2 × n2 matrix R̂(p) satisfies the
dynamical Yang–Baxter equation (DYBE) first studied in [42] whose general solution obeying
the ice condition was found in [49].

The associativity of triple tensor products of quantum matrices together with equation
(1.10) for R̂ yields the DYBE for R̂(p):

R̂12(p)R̂23(p − v1)R̂12(p) = R̂23(p − v1)R̂12(p)R̂23(p − v1) (2.23)

where we use again the succinct notation of Faddeev et al (cf section 1):

(R̂23(p − v1))
i1i2i3
j1j2j3

= δ
i1
j1
R̂(p − v(i1))

i2i3
j2j3

. (2.24)

In deriving (2.23) from (2.13) we use (2.6). (The DYBE (2.23) is only sufficient for the
consistency of the quadratic matrix algebra relations (2.13); it would also be necessary if the
matrix a were invertible, i.e., if dq(p) �= 0.)

The property of the operators R̂i i+1(p) to generate a representation of the braid group is
ensured by the additional requirement (reflecting (1.27b))

R̂12(p + v1 + v2) = R̂12(p) ⇔ R̂
ij

kl (p)ak
αa

l
β = ak

αa
l
βR̂

ij

kl (p). (2.25)

The Hecke algebra condition (1.27c) for the rescaled matrices ρn(gi) (1.28a) also fits our
analysis of braiding properties of conformal blocks displayed in the previous subsection.

It is not surprising that the direct inspection of the braiding properties of the conformal
blocks, on the one hand, and the common solution of the DYBE, (2.25) and the Hecke algebra
conditions [45, 49], on the other, lead to the same result. The solution (2.22b) can be presented
in a form similar to (1.28):

q
1
n R̂(p) = q11 − A(p) A(p)

ij

kl = [pij − 1]

[pij ]

(
δi
kδ

j

l − δi
l δ

j

k

)
. (2.26)

It is straightforward to verify relations (1.29) for Ai(p) := q11i i+1 − q
1
n R̂i i+1(p); in

particular,

[pij − 1] + [pij + 1] = [2][pij] ⇒ A2(p) = [2]A(p). (2.27)
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According to [45] the general SL(n)-type dynamical R-matrix [49] can be obtained from
(2.26) by either an analogue of Drinfeld’s twist [24] (see lemma 3.1 of [45]) or by a canonical
transformation pi → pi + ci where ci are constants (numbers) such that

∑n
i=1 ci = 0.

The interpretation of the eigenvalues pi of p̂i as (shifted) weights (of the corresponding
representations of Uq) allows us to dispose of the second freedom.

Inserting (2.26) into the exchange relations (2.13) allows us to present the latter in the
following explicit form,[
ai

α, a
j
α

] = 0 ai
αa

i
β = qεαβ ai

βai
α (2.28)

[pij − 1]aj
αa

i
β = [pij ]ai

βaj
α − qεβαpij ai

αa
j

β for α �= β and i �= j (2.29)

where qεαβ is defined in (1.28b).
There is, finally, a relation of order n for ai

α , derived from the following basic property of
the quantum determinant,

det(a) = 1

[n]!
ε〈1...n|a1 · · · anE |1...n〉 ≡ 1

[n]!
εi1···ina

i1
α1

. . . ain
αn
Eα1...αn (2.30)

where Eα1 ...αn is given by (1.34) while εi1...in is the dynamical Levi-Civita tensor with lower
indices (which can be consistently chosen to be equal to the undeformed one [45], a
convention which we assume throughout this paper), normalized by εn...1 = 1. The ratio
det(a)

( ∏
i<j [pij ]

)−1
belongs to the centre of the quantum matrix algebra A = A(R̂(p), R̂)

(see corollary 5.1 of proposition 5.2 in [45]). It is, therefore, legitimate to normalize the
quantum determinant setting

det(a) =
∏
i<j

[pij ] ≡ D(p). (2.31)

It is proportional (with a positive p-independent factor) to the quantum dimension (1.42).

Remark 2.2. The results of this section are clearly applicable if the determinant D(p) does
not vanish (i.e., either for generic q or, if q is given by (0.1), for p1n < h). As noted in the
introduction, the notion of a CVO and the splitting (2.7) may well require a modification if
this condition is violated.

To sum up, the intertwining quantum matrix algebra A is generated by the n2 elements
ai

α and the field Q(q, qpi ) of rational functions of the commuting variables qpi whose product
is 1, subject to the exchange relations (2.6) and (2.13) and the determinant condition (2.31).

The centralizer of qpi in A (i.e., the maximal subalgebra of A commuting with all qpi )
is spanned by the QUEA Uq over the field Q(q, qpi ) and ai

α obey the Uq covariance relations
(2.10). The expressions for the Uq generators in terms of n-linear products of ai

α are worked
out for n = 2 and n = 3 in appendix A.

We shall use in what follows the intertwining properties of the product a1 · · · an (see
proposition 5.1 of [45]):

ε〈1...n|a1 · · · an = D(p)E〈1...n| (2.32a)

or, in components,

εi1...ina
i1
α1

· · · ain
αn

= D(p)Eα1 ...αn (2.32b)

a1 · · · anE |1...n〉 = ε|1...n〉(p)D(p). (2.33)
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Here ε(p) is the dynamical Levi-Civita tensor with upper indices given by

εi1...in (p) = (−1)�(σ )
∏

1�µ<ν�n

[piµiν − 1]

[piµiν ]
(2.34)

�(σ ) standing again for the length of the permutation σ = (
n,...,1
i1,...,in

)
.

Remark 2.3. Self-consistency of (1.17) requires that det(a) = det(aM). Indeed, the
noncommutativity of qpj and ai, see equation (2.6), exactly compensates the factors q1− 1

n

when computing the determinant of aM (cf (2.11a), (2.11b)); we have

q2pn−1+ 1
n an

α1
q2pn−1−1+ 1

n an−1
α2

· · · q2p1−1+ 1
n a1

αn
= an

α1
an−1

α2
· · · a1

αn
(2.35)

since

q
2
n
(1+2+···+n−1)−n+1 = 1. (2.36)

An important consequence of the ice property (2.22a) (valid for both R̂ and R̂(p)) is the
existence of subalgebras of A with similar properties.

Let

I = {i1, i2, . . . , im} 1 � i1 < i2 < · · · < im � n

and

� = {α1, α2, . . . , αm} 1 � α1 < α2 < · · · < αm � n

be two ordered sets of m integers (1 � m � n). Let A1m|� be the restriction of the
q-antisymmetrizer (A1m)

α1α2...αm

β1β2...βm
, αk, βk ∈ {1, 2, . . . , n} (for its definition see (1.30)) to a

subset of indices αk, βk ∈ �. Then rank A1m|� = 1 and one can define the corresponding
restricted Levi-Civita tensors satisfying

A1m|� = E|� |1...m〉E|� 〈1...m| E|� 〈1...m|E|� |1...m〉 = [m]!. (2.37)

In the same way one defines restricted dynamical Levi-Civita tensors

ε|I |1...m〉(p) and ε|I 〈1...m|(p)

for the subset I ⊂ {1, 2, . . . , n} (the last one of these does not actually depend on p and
coincides with the classical Levi-Civita tensor).

Consider the subalgebra A(I, �) ⊂ A generated by Q(q, qpij ), i, j ∈ I and the elements
of the submatrix a|I,� := ‖a‖i∈I

α∈� of the quantum matrix a.

Proposition 2.4. The normalized minor

�I,�(a) := det(a|I,�)

DI (p)
:= 1

[m]!DI (p)
ε|I〈1...m|(a1a2 · · · am)|I,�E|� |1...m〉 (2.38)

where

DI (p) :=
∏

i<j;i,j∈I

[pij ] (2.39)

belongs to the centre of A(I, �).

The statement follows from the observation that relations (2.32a)–(2.33) and (2.34) are
valid for the restricted quantities E|�, ε|I ,DI (p) and a|I,� .
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Using restricted analogues of relations (2.33) and (2.34), we can derive alternative
expressions for the normalized minors,

�I,�(a) = 1

D+
I (p)

ai1
α1

ai2
α2

· · · aim
αm
E
∣∣α1 ...αm

�
(2.40)

where

D+
I (p) :=

∏
i<j;i,j∈I

[pij + 1] (2.41)

the indices ik ∈ I are in descendant order, i1 > i2 > · · · > im, and the indices αk ∈ � are
summed over.

3. The Fock space representation of A; the ideal Ih for qh = −1

3.1. The Fock space F(A) (the case of generic q)

The ‘Fock space’ representation of the quantum matrix algebra A was anticipated in
equation (2.7) and the subsequent discussion of Young tableaux. We define F and its dual
F ′ as cyclic A modules with one-dimensional (1D) Uq-invariant subspaces of multiples of
(non-zero) bra and ket vacuum vectors 〈0| and |0〉 such that 〈0|A = F ′,A|0〉 = F satisfying

ai
α|0〉 = 0 for i > 1 〈0|aj

α = 0 for j < n (3.1a)

qpij |0〉 = qj−i |0〉 〈0|qpij = qj−i〈0| (3.1b)

(X − ε(X))|0〉 = 0 = 〈0|(X − ε(X)) (3.1c)

for any X ∈ Uq (with ε(X) the counit). The duality between F and F ′ is established by a
bilinear pairing 〈.|.〉 such that

〈0|0〉 = 1 〈�|A|�〉 = 〈�|A′|�〉 (3.2)

where A → A′ is a linear anti-involution (transposition) of A defined for generic q by

Di (p)
(
ai

α

)′ = ãα
i := 1

[n − 1]!
Eαα1 ...αn−1εii1...in−1a

i1
α1

· · · ain−1
αn−1

(qpi )′ = qpi (3.3)

where Di (p) stands for the product

Di (p) =
∏

j<l,j �=i �=l

[pjl]
(⇒[

Di (p), ai
α

] = 0 = [
Di (p), ãα

i

])
. (3.4)

We verify in appendix B the involutivity property, A′′ = A, of (3.3) for n = 3. Equation (3.3)
implies the following formulae for the transposition of the Chevalley generators of Uq :

E′
i = Fiq

Hi−1 F ′
i = q1−HiEi (qHi )′ = qHi . (3.5)

The main result of this section is the proof of the statement that for generic q (q not a
root of unity) F is a model space for Uq : each finite-dimensional IR of Uq is encountered in
F with multiplicity one.

Lemma 3.1. For generic q the spaceF is spanned by antinormal ordered polynomials applied
to the vacuum vector:

Pmn−1

(
an−1

α

) · · ·Pm1

(
a1

α

)|0〉 with m1 � m2 � · · · � mn−1. (3.6)

Here Pmi

(
ai

α

)
is a homogeneous polynomial of degree mi in ai

1, . . . , a
i
n.
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Proof. We shall first prove the weaker statement that F is spanned by vectors of the type
Pmn

(
an

α

) · · · Pm1

(
a1

α

)|0〉 (without restrictions on the non-negative integers m1, . . . ,mn). It
follows from the exchange relations (2.29) for i > j and from the observation that [pjl +1] �= 0
for generic q and j < l in view of (3.1b).

Next we note that if mj−1 = 0 but mj > 0 for some j > 1, the resulting vector vanishes.
Indeed, we can use in this case repeatedly (2.29) for i < j − 1 to move an a

j
α until it hits the

vacuum giving zero according to (3.1a).
If all mi > 0, i = 1, . . . , n, we move a factor ai

αi
of each monomial to the right to get rid

of an n-tuple of ai
αi

since

an
αn

· · · a1
α1

|0〉 = [n − 1]!Eαn...α1 |0〉; (3.7)

here we have used once more (3.1a), and also (2.32) and (3.1b). Repeating this procedure mn

times, we obtain an expression of the type (3.6) (or zero, if mn > min(m1, . . . ,mn−1)).
To prove the inequalities mi � mi+1 we can reduce the problem (by the same procedure

of moving, whenever possible, ai
α to the right) to the statement that any expression of the type

ai+1
β1

ai+1
β2

ai
αi

· · · a1
α1

|0〉 vanishes. We shall display the argument for a special case proving that

a3
αa

3
βa2

2a
1
1|0〉 = 0 for n � 3. (3.8)

This is a simple consequence of (2.28), (2.29) and (3.1a) if either α or β is 1 or 2 . We can
hence write, using (2.10b),

0 = F2a
3
2a

3
3a

2
2a

1
1 |0〉 = (

a3
3

)2
a2

2a
1
1 |0〉 + a3

2a
3
3a

2
3a

1
1 |0〉 = (

a3
3

)2
a2

2a
1
1|0〉. (3.9)

By repeated application of Fi (with i � 3 for n � 4) exploiting the Uq invariance of the
vacuum (3.1c), we thus complete the proof of (3.8) and hence, of lemma 3.1. �

Corollary. It follows from lemma 3.1 that the space F splits into a direct sum of weight spaces
Fp spanned by vectors of type (3.6) with fixed degrees of homogeneity m1, . . . ,mn−1,

F = ⊕pFp pij = mi − mj + j − i (�j − i for i < j) (3.10)

each subspace Fp being characterized by (2.1).

In order to exhibit the Uq properties of Fp we shall introduce the highest and lowest
weight vectors (HWV and LWV)

|λ1 · · · λn−1〉 and |−λn−1 − · · · − λ1〉
obeying

(qHi − qλi )|λ1 · · · λn−1〉 = 0 = (qHi − q−λn−i )|−λn−1 − · · · − λ1〉 (3.11)

for λi = mi − mi+1 = pii+1 − 1, 1 � i � n − 1.

Lemma 3.2. Each Fp contains a unique (up to normalization) HWV and a unique LWV
satisfying (3.11). They can be written in any of the following three equivalent forms:

|λ1 · · ·λn−1〉 = (
�n−1 1

n−1 1

)λn−1
(
�n−2 1

n−2 1

)λn−2 · · · (�2 1
2 1

)λ2
(
a1

1

)λ1 |0〉
= (

a1
1

)λ1
(
�2 1

2 1

)λ2 · · · (�n−1 1
n−1 1

)λn−1 |0〉
∼ (

an−1
n−1

)λn−1
(
an−2

n−2

)λn−2+λn−1 · · · (a1
1

)λ1+···+λn−1 |0〉
(3.12)

|−λn−1 − · · · − λ1〉 = (
�n−1 1

n2

)λn−1
(
�n−2 1

n3

)λn−2 · · · (�2 1
nn−1

)λ2
(
a1

n

)λ1 |0〉
= (

a1
n

)λ1
(
�2 1

nn−1

)λ2 · · · (�n−1 1
n2

)λn−1 |0〉
∼ (

an−1
2

)λn−1
(
an−2

3

)λn−2+λn−1 · · · (a1
n

)λ1+···+λn−1 |0〉;
(3.13)
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here �i1
i1 and �i1

nn−i+1 are normalized minors of the type (2.40),

�i1
i1 = �Ii,�i

(a) = 1

D+
Ii
(p)

ai
α1

· · · a1
αi
E
∣∣α1...αi

�i
(3.14)

for Ii := {1, 2, . . . , i} =: �i, and

�i1
nn−i+1 ≡ �Ii,�

i
n
(a) = 1

D+
Ii
(p)

ai
α1

· · · a1
αi
E
∣∣α1...αi

�i
n

(3.15)

where �i
n := {n − i + 1, n − i + 2, . . . , n}.

Proof. We shall prove the uniqueness of the HWV by reducing an arbitrary eigenvector of
qHi of eigenvalue qλi , 1 � i � n − 1, to the form of the second equation (3.12). To this
end we again apply the argument in the proof of lemma 3.1. Let k (�n − 1) be the maximal
numeral for which λk > 0. By repeated application of the exchange relations (2.29) we can
arrange each k-tuple ak

α1
· · · a1

αk
to hit a vector |v〉 such that (pii+1 − 1)|v〉 = 0 for i < k.

(Observe that all vectors of the type |vk〉 = (
�k1

k1

)λk · · · (�n−11
n−11

)λn−1 |0〉, for various choices
of the non-negative integers λk, . . . , λn−1, have this property.) Noting then that ai+1

α |v〉 = 0
whenever (pii+1 − 1)|v〉 = 0 and using once more equation (2.29) we find

(pii+1 − 1)|v〉 = 0 ⇔ (
ai+1

β ai
α + qεαβ ai+1

α ai
β

)|v〉 = 0 (3.16)

which implies that we can substitute the product ai+1
α ai

β (acting on such a vector) by its
antisymmetrized expression:

ai+1
α ai

β |v〉 = 1

[2]

(
qεβαai+1

α ai
β − ai+1

β ai
α

)|v〉 (for (pii+1 − 1)|v〉 = 0). (3.17)

Such successive antisymmetrizations will give rise to the minor �k1
k1 yielding eventually the

second expression (3.12) for the HWV.
To complete the proof of lemma 3.2, it remains to prove the first equalities in (3.12)

and (3.13). The commutativity of all factors �i1
i1, 1 � i � n − 1

(
�11

11 ≡ a1
1

)
follows from

proposition 2.4 which implies[
ai

α,�k1
k1

] = 0 for 1 � α, i � k. (3.18)

In order to compute the proportionality factors between the second and the third expressions
in (3.12) and (3.13) one may use the general exchange relation

[pij − 1]
(
aj

α

)m
ai

β = [pij + m − 1]ai
β

(
aj

α

)m − qεβα(pij +m−1)[m]
(
aj

α

)m−1
ai

αa
j

β (3.19)

(valid for i �= j and α �= β) which follows from (2.29). �

Lemmas 3.1 and 3.2 yield the main result of this section.

Proposition 3.3. The space F is (for generic q) a model space of Uq.

We proceed in defining the Uq symmetry of a Young tableau Y . A Uq tensor Tα1...αs
is

said to be q-symmetric if for any pair of adjacent indices αβ we have

T...α′β ′...A
α′β ′
αβ = 0 ⇔ T...αβ... = qεαβT...βα... (3.20)

where qεαβ is defined in (1.28b). A tensor Fα1 ...αs
is q-skewsymmetric if it is an eigenvector of

the antisymmetrizer (1.28b):

F...α′β ′...A
α′β ′
αβ = [2]F...αβ... ⇔ F...αβ... = −qεβαF...βα.... (3.21)
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A Uq tensor of λ1 + 2λ2 + · · · + (n − 1)λn−1 indices has the q-symmetry of a Young tableau
Y = Y[λ1,...,λn−1] (where λi stands for the number of columns of height i) if it is first q-
symmetrized in the indices of each row and then q-antisymmetrized along the columns.

The q-symmetry of a tensor associated with a Young tableau allows us to choose as
independent components an ordered set of values of the indices α, β that monotonically
increase along rows and strictly increase down the columns (as in the undeformed case—see
[33]). Counting such labelled tableaux of a fixed type Y allows us to reproduce the dimension
d1(p) of the space Fp.

3.2. Canonical basis; inner product

We shall introduce a canonical basis in the Uq modules Fp in the simplest cases of n = 2, 3
preparing the ground for the computation of inner products in Fp for such low values of n.

We shall follow Lusztig [53] for a general definition of a canonical basis. It is, to begin
with, a basis of weight vectors, a property which determines it (up to normalization) for n = 2.

We shall set in this case

|p,m〉 = (
a1

1

)m(
a1

2

)p−1−m|0〉 0 � m � p − 1 (p ≡ p12). (3.22)

Introducing (following [53]) the operators

E[m] = 1

[m]!
Em F [m] = 1

[m]!
Fm (3.23)

we can relate |p,m〉 to the HWV and LWV in Fp:

F [p−1−m]|p,p − 1〉 =
[
p − 1

m

]
|p,m〉 = E[m]|p, 0〉. (3.24)

The situation for n = 3 can still be handled more or less explicitly. A basis in Fp

is constructed in that case by applying Lusztig’s canonical basis [53] in either of the two
conjugate Hopf subalgebras of raising or lowering operators

X
[m]
1 X

[�]
2 X

[k]
1 and X

[k]
2 X

[�]
1 X

[m]
2 for X = E or F � � k + m (3.25)

the Uq Serre relations implying

X
[m]
1 X

[k+m]
2 X

[k]
1 = X

[k]
2 X

[k+m]
1 X

[m]
2 (3.26)

to the lowest or to the highest weight vector, respectively,

E
[m]
1 E

[�]
2 E

[k]
1 |−λ2 − λ1〉 E

[k]
2 E

[�]
1 E

[m]
2 |−λ2 − λ1〉 (3.27)

F
[m]
1 F

[�]
2 F

[k]
1 |λ1λ2〉 F

[k]
2 F

[�]
1 F

[m]
2 |λ1λ2〉 0 � k + m � � � λ1 + λ2 (3.28)

where we are setting

|λ1λ2〉 = (
a1

1

)λ1
(
qa3

3
′)λ2 |0〉 (3.29)

|−λ2 − λ1〉 = (
a1

3

)λ1
(
q̄a3

1
′)λ2 |0〉. (3.30)

(These expressions differ by an overall power of q from (3.12) and (3.13).)



Quantum matrix algebra for the SU(n) WZNW model 5521

Lemma 3.4. The action of F
[m]
i

(
E

[m]
i

)
,m ∈ N on a HWV (LWV) is given by

F
[m]
1 |λ1λ2〉 =

[
λ1

m

] (
a1

1

)λ1−m(
a1

2

)m(
qa3

3
′)λ2 |0〉

(3.31a)

F
[m]
2 |λ1λ2〉 =

[
λ2

m

] (
a1

1

)λ1
(
qa3

3
′)λ2−m(−a3

2
′)m|0〉

E
[m]
1 |−λ2 − λ1〉 =

[
λ2

m

] (
a1

3

)λ1
(−a3

2
′)m(

q̄a3
1
′)λ2−m|0〉

(3.31b)

E
[m]
2 |−λ2 − λ1〉 =

[
λ1

m

] (
a1

2

)m(
a1

3

)λ1−m(
q̄a3

1
′)λ2 |0〉.

The proof uses (2.10), (2.28) and the relations

a3
2
′
a3

3
′ = qa3

3
′
a3

2
′

a3
1
′
a3

2
′ = qa3

2
′
a3

1
′

(3.32)

obtained by transposing the second equality in (2.28) for i = 3.
We shall turn now to the computation of the Uq invariant form.

Conjecture 3.5. The scalar square of the HWV (3.12) and the LWV (3.13) of Uq is given by

〈λ1 · · · λn−1|λ1 · · · λn−1〉 =
∏
i<j

[pij − 1]! = 〈−λn−1 − · · · − λ1| −λn−1 − · · · − λ1〉. (3.33)

For n = 2 the result is a straightforward consequence of equations (3.22) and (A.11) (of
appendix A). For n = 3 equation (3.33) reads

〈λ1λ2|λ1λ2〉 = [λ1]![λ2]![λ1 + λ2 + 1]! = 〈−λ2 − λ1|−λ2 − λ1〉 (3.34)

which is proved in appendix C. We conjecture that the argument can be extended to prove
(3.33) for any n � 2.

For n = 2 we can also write the inner products of any two vectors of the canonical basis
[36]:

〈p,m|p′,m′〉 = δpp′δmm′ q̄m(p−1−m)[m]![p − 1 − m]!. (3.35)

3.3. The case of q a root of unity; subspace of zero norm vectors; ideals in A

In order to extend our results to the study of a WZNW model, we have to describe the structure
of the Uq modules Fp for q a root of unity, (0.1). Here Fp is, by definition, the space spanned
by vectors of type (3.6) (albeit the proof of lemma 3.1 does not apply to this case). We start
by recalling the situation for n = 2 (see [25, 26, 36]).

The relations

E|p,m〉 = [p − m − 1]|p,m + 1〉 F |p,m〉 = [m]|p,m − 1〉 (3.36)

show that for p � h the Uq module Fp admits a single HWV and LWV and is, hence,
irreducible. For p > h the situation changes.

Proposition 3.6. For h < p < 2h and q given by (0.1) the module Fp is indecomposable. It
has two Uq(sl2) invariant subspaces with no invariant complement:

I+
p,h = Span{|p,m〉, h � m � p − 1}

(3.37)
I−

p,h = Span{|p,m〉, 0 � m � p − 1 − h}.
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It contains a second pair of singular vectors: the LWV |p, h〉 and the HWV |p,p − 1 − h〉.
The vector |p,p − h〉 is cosingular, i.e., it cannot be written in the form E|v〉 with v ∈ F(p);
similarly, the vector |p, h − 1〉 cannot be presented as F |v〉.

The statement follows from (3.36) and from the fact that

F |p,p − h〉 = [p − h]|p,p − h − 1〉 �= 0 �= E|p, h − 1〉 (3.38)

so that the invariant subspace I+
p,h ⊕ I−

p,h indeed has no invariant complement in Fp.
The factor space

F̃p = Fp

/(
I+

p,h ⊕ I−
p,h

)
(h < p < 2h) (3.39)

carries an IR of Uq(sl2) of weight p̃ = 2h − p (cf (2.4)).
The inner product (3.35) vanishes for vectors of the form (3.22) with p > h and either

m � h or m � p − 1 − h. Writing similar conditions for the bra vectors we end up with the
following proposition: all null vectors belong to the set Ih|0〉 or 〈0| Ih where Ih is the ideal
generated by [hp], [hH ], qhp + qhH , and by the hth powers of the ai

α or, equivalently, by the
hth powers of ãα

i . The factor algebra Ah = A/Ih is spanned by monomials of the type

qµpqνH
(
a1

1

)m1
(
a1

2

)m2
(
a2

1

)n1
(
a2

2

)n2 −h < µ � h 0 � ν < h 0 � mi, ni < h (3.40)

and is, hence, (not more than) 2h6 dimensional.
The definition of the ideal Ih can be generalized for any n � 2 assuming that it includes

the hth powers of all minors of the quantum matrix
(
ai

α

)
(for n = 3, equivalently, the hth

powers of ai
α and ãα

i ). It follows from equation (3.19), taking into account the vanishing of
[h], and from (2.28) that(

ai
α

)h
a

j

β + (−1)δαβ a
j

β

(
ai

α

)h = 0
(=[

[pij ],
(
ai

α

)h]
+

)
(3.41)

implying also (
ai

α

)h
ã

β

j + (−1)δ
β
α ã

β

j

(
ai

α

)h = 0 for n = 3. (3.42)

Similar relations are obtained (by transposition of (3.41) and (3.42)) for
(
ãα

i

)h
thus proving

that the ideal Ih is indeed non-trivial, Ih �= A.

One can analyse on the basis of lemma 3.4 the structure of indecomposable Uq(sl3)

modules for, say, h < p13 < 3h, thus extending the result of proposition 3.6. For example, as
a corollary of (3.31), for q given by (0.1) (a 2hth root of 1 ) a HWV (a LWV) is annihilated
by Fi (Ei) if λi = 0 mod h (λī = 0 mod h) where λ1̄ = λ2, λ2̄ = λ1. If, in particular, both λi

are multiples of h, then the corresponding weight vector spans a 1D IR of Uq(sl3).
For n > 2, however, the subspace Ih |0〉 does not exhaust the set of null vectors in F .

Indeed, for n = 3 it follows from (3.34) and from the non-degeneracy of the highest and
the lowest weight eigenvalues of the Cartan generators that the HWV and the LWV are null
vectors for p13 > h:

〈F |λ1λ2〉 = 0 = 〈F |−λ2 − λ1〉 for λ1 + λ2 + 1 = p13 − 1 � h. (3.43)

(If the conjecture (3.33) is satisfied then the HWV and the LWV for any n are null vectors
for p1n � h + 1.) Since the representation of highest weight (λ1, λ2) is irreducible
for λi � h − 1 (cf (3.31)), the subspace N ⊂ F of null vectors contains Fp for
p12 = λ1 + 1 � h, p23 = λ2 + 1 � h, p13 = p12 + p23 > h,

Pλ1λ2

(
a1

α; a3
β

′)|0〉 ∈ N for λi � h − 1 λ1 + λ2 � h − 1 (3.44)

for Pλ1λ2

(
ρ1a

1
α; ρ2a

3
β

′) = ρ
λ1
1 ρ

λ2
2 Pλ1λ2

(
a1

α; a3
β

′)
, i.e., for any homogeneous polynomial Pλ1λ2

of degree λ1 in the first three variables, a1
α, and of degree λ2 � h − λ1 − 1 in a3

β

′
. It follows
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that N contains all Uq modules Fp̃ of weights (2.4) corresponding to the first Kac–Moody
singular vector for p13 < h (⇒p̃13 = 2h − p13 > h, see remark 2.1). Hence, the factor
space F/N would be too small to accommodate the gauge theory treatment of the zero mode
counterpart of such singular vectors.

We can write the null spaceN in the formN = Ĩh|0〉 where Ĩh ⊂ A is the ideal containing
all Pλ1λ2 appearing in (3.44) and closed under transposition, which contains Ih as a proper
subideal. (We note that the transposition (3.3) is ill-defined for q a root of unity whenever
Di (p) vanishes.) The above discussion induces us to define the factor algebra

Ah = A/Ih (3.45)

(rather than A/Ĩh) as the restricted zero mode algebra for q a root of unity. It is easily verified
(following the pattern of the n = 2 case) that Ah is again a finite-dimensional algebra. Its
Fock space Fh includes vectors of the form(

a2
1

)m1
(
a2

2

)m2
(
a2

3

)m3
(
a1

1

)n1
(
a1

2

)n2
(
a1

3

)n3 |0〉 (3.46)

for mi, ni < h
( ∑

i mi �
∑

i ni

)
thus allowing for weights

p13 = n1 + n2 + n3 + 2 � 3h − 1. (3.47)

This justifies the problem of studying indecomposable Uq(sl3) modules for p13 < 3h.
To sum up, the intertwining quantum matrix algebraA introduced in [45] is an appropriate

tool for studying the WZNW chiral zero modes. Its Fock space representation provides the
first known model of Uq for generic q . For exceptional q (satisfying (0.1)) it gives room—by
the results of this section—to the ‘physical Uq modules’ coupled to the integrable (height h)
representations of the ŝu(n) Kac–Moody algebra. This is a prerequisite for a BRS treatment
of the zero mode problem of the 2D WZNW model (carried out, for n = 2, in [26]).

Acknowledgments

The final version of this paper was completed during visits of OVO to ESI, Vienna, of LKH to
ESI, Vienna and to ICTP and INFN, Trieste, and of ITT to ESI, Vienna, to SISSA, Trieste and to
IHES, Bures-sur-Yvette. The authors thank these institutions for hospitality. PF acknowledges
the support of the Italian Ministry of Education, University and Research (MIUR). This work
is supported in part by the Bulgarian National Council for Scientific Research under contract
F-828, by ECFPS contract HPRN-CT-2002-00325, and by CNRS and RFBR grants PICS-
608, RFBR 98-01-22033. The work of API and PNP is supported in part by RFBR grant no
00-01-00299.

Appendix A. Monodromy matrix and identification of Uq(sln) generators for n = 2
and n = 3

Equation (2.11) rewritten as

M = a−1Mpa or Mα
β =

n∑
i=1

(a−1)αi ai
βq−2pi−1+ 1

n (A.1)

together with the Gauss decomposition (1.5) of the monodromy allows us to express by (1.24a)
the Chevalley generators of Uq as well as the operators EiEi+1 − qEi+1Ei, Fi+1Fi − qFiFi+1

etc as linear combinations of products a1
α1

· · · an
αn

(with coefficients that depend on qpi and the
Cartan elements q±Hi ). Indeed, in view of (2.30) and (2.31), we can express the elements of
the inverse quantum matrix in terms of the (noncommutative) algebraic complement ãα

i of ai
α:

D(p)(a−1)αi = ãα
i = (−1)n−1

[n − 1]!
εi1...in−1iEαα1 ...αn−1ai1

α1
· · · ain−1

αn−1
. (A.2)
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Equation (A.2) is equivalent to (3.3) since for the constant ε-tensor used here we have
(−1)n−1εi1...in−1i = εii1...in−1 . Thus we can recast (2.30)–(2.33) and (A.1) in the form

ãα
i ai

β = D(p)δα
β

n∑
i=1

ãα
i ai

βq−2pi−1+ 1
n = D(p)Mα

β . (A.3)

Using equations (4.10)–(4.12) of [45] we can also write
1

D(p)
ai

αã
α
j = Ni

j (p) = δi
j

∏
k<i

[pki + 1]

[pki]

∏
i<l

[pil − 1]

[pil]
. (A.4)

We can express the Uq generators in terms of products ãα
i ai

β (no summation over i). To this
end we use (1.5) and (1.6) to write

Mα
β = q

1
n
−n

n∑
σ=max(α,β)

fασ−1dσ eσ−1βdβ (A.5)

with fαα = fα, eαα = eα; fαα−1 = 1 = eα−1α (see (1.24a)). It is thus simpler to start the
identification of the elements with Mn

β and Mα
n . Using (1.24a), we find, in particular,

dn
2 = q2�n−1 = 1

D(p)

n∑
i=1

ãn
i a

i
nq

n−1−2pi .

We shall spell out the full set of resulting relations for n = 2 and n = 3.

The general relation between Cartan generators and sln weights

Hi ≡
∑

j

cij�j = 2�i − �i−1 − �i+1 (�0 = �n = 0) (A.6)

tells us, for n = 2, that 2�1 = H. This allows us (using (1.28b) and (1.24a)) to write relations
(A.3) in the form

ãα
i ai

β = [p]δα
β (A.7)

q̄pãα
1 a1

β + qpãα
2 a2

β = q̄[p](M+M
−1
− )αβ. (A.8)

Inserting for M+M
−1
− (1.5), (1.6) and (1.24) we find for n = 2

q̄M+M
−1
− = q̄

(
q̄

H
2 (q̄ − q)Fq

H
2

0 q
H
2

)(
q̄

H
2 0

(q̄ − q)Eq̄
H
2 q

H
2

)

=
(

qp + q̄p − qH+1 (q̄ − q)E′

(q̄ − q)E qH−1

)
E′ = FqH−1. (A.9)

As a result we obtain

q̄pã1
1a

1
1 + qpã1

2a
2
1 = [p](qp + q̄p − qH+1)

q̄pã2
1a

1
2 + qpã2

2a
2
2 = [p]qH−1

(A.10)
q̄pã1

1a
1
2 + qpã1

2a
2
2 = [p](q̄ − q)E′

q̄pã2
1a

1
1 + qpã2

2a
2
1 = [p](q̄ − q)E.

Together with (A.7) this gives eight equations for the eight products ãα
i ai

β which can be solved
with the result

ã1
1a

1
1 = qH+1 − q̄p

q − q̄

(=qa2
2 ã

2
2

)
ã1

2a
2
1 = qp − qH+1

q − q̄

(=qa1
2ã

2
1

)
ã2

2a
2
2 = qH−1 − q̄p

q − q̄

(=q̄a1
1 ã

1
1

)
ã2

1a
1
2 = qp − qH−1

q − q̄

(=q̄a2
1 ã

1
2

)
ã2

1a
1
1 = E = −ã2

2a
2
1

(=a1
1 ã

2
1

)
ã1

1a
1
2 = E′ = −ã1

2a
2
2

(=a1
2 ã

1
1

)
(A.11)
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further implying

a2
2 ã

2
2 − a1

1 ã
1
1 = q̄p = q̄ã1

1a
1
1 − qã2

2a
2
2

a2
1 ã

1
2 − a1

2 ã
2
1 = qp = qã2

1a
1
2 − q̄ã1

2a
2
1 (A.12)

ã1
1a

1
1 − ã2

2a
2
2 = qH = ã2

1a
1
2 − ã1

2a
2
1 .

In deriving the relations including products of the type ai
αã

β

i (appearing in parentheses in
(A.11)), we have used (A.2) and (2.28).

These relations agree with (2.28) and (2.29) for ãα
i given by (A.2) which becomes

ãα
i = Eαβεija

j

β i.e. ã1
1 = q1/2a2

2 ã1
2 = −q1/2a1

2
(A.13)

ã2
1 = −q̄1/2a2

1 ã2
2 = q̄1/2a1

1

implying

ã1
1a

1
1 = qa2

2 ã
2
2 ã2

2a
2
2 = q̄a1

1 ã
1
1 ã2

1a
1
2 = q̄a2

1 ã
1
2 ã1

2a
2
1 = qa1

2 ã
2
1 . (A.14)

In the case of n = 3 we make (A.3) and (A.4) explicit by noting the identities

3p1 = p12 + p13 3p2 = p23 − p12 3p3 = −p13 − p23 (A.15)

D(p) = D(p1, p2, p3) = [p12][p23][p13] (A.16)

D(p)Ni
j (p) = diag([p23][p12 − 1][p13 − 1], [p13][p12 + 1][p23 − 1],

[p12][p13 + 1][p23 + 1])
(
Ni

i (p) = [3]
)
. (A.17)

We find, in particular,

D(p)q2�2−2 = ã3
1a

1
3 q̄

2
3 (p12+p13) + ã3

2a
2
3q

2
3 (p12−p23) + ã3

3a
3
3q

2
3 (p13+p23)

(A.18)
D(p)(q̄2 − 1)q�1E2 = ã3

1a
1
2 q̄

2
3 (p12+p13) + ã3

2a
2
2q

2
3 (p12−p23) + ã3

3a
3
2q

2
3 (p13+p23)

etc.

Appendix B. Transposition in A for n = 3

The involutivity of the transposition (3.3) is easily verified for n = 2. Here we shall verify it
for n = 3 which is indicative for the general case.

Proposition A.1. The (linear) antihomomorphism of A defined by (3.3) is involutive:
ai

α

′′ = ai
α.

Proof. Starting with relation (3.3) for

ãα
i = 1

[2]
εijkEαβγ a

j

βak
γ (B.1)

we shall prove, say, for i = 1, that

[2][p23]a1
α

′′ = Eαβγ

(
a3

βa2
γ − a2

βa3
γ

)′

= 1

[2]
Eαβγ Eγρσ

{
1

[p13]

(
a1

ρa
3
σ − a3

ρa
1
σ

) ã
β

3

[p12]
− 1

[p12]

(
a2

ρa
1
σ − a1

ρa
2
σ

) ã
β

2

[p13]

}
.

(B.2)

Noting the relation between the contraction of two Levi-Civita tensors and the q-
antisymmetrizer (1.28b),

Eαβγ Eγρσ = A
ρσ
αβ = q̄εαβ δ

ρσ
αβ − δ

ρσ
βα (B.3)
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we can rewrite (B.2) as

[2]2D(p)a1
α

′′ = [p12]

[p12 − 1]

{
q̄εαβ

(
a1

αa
3
β − a3

αa
1
β

) − (
a1

βa3
α + a3

βa1
α

)}
ã

β

3

+
[p13]

[p13 − 1]

{
q̄εαβ

(
a1

αa
2
β − a2

αa
1
β

) − (
a1

βa2
α + a2

βa1
α

)}
ã

β

2 . (B.4)

Applying equation (2.29) four times in the form

a1
βai

α = [p1i − 1]

[p1i]
ai

αa
1
β +

q̄εαβ

[p1i]
a1

αa
i
β ai

βa1
α = [p1i + 1]

[p1i]
a1

αa
i
β − qεαβ

[p1i]
ai

αa
1
β (B.5)

for i = 2, 3, α �= β, and using (A.4), (A.16) and the identities

q̄ε[p] + [p + 1] − q̄εp = [2][p] = q̄ε[p] + [p − 1] + qεp (B.6)

for ε = ±1, we find that (B.2) is equivalent to

[2]D(p)a1
α

′′ = [p12]

[p12 − 1]
a1

α[p12][p13 + 1][p23 + 1] +
[p13]

[p13 − 1]
a1

α[p13][p12 + 1][p23 − 1]

= [p12][p13]([p23 + 1] + [p23 − 1])a1
α = [2]D(p)a1

α. (B.7)

The last equality is satisfied due to the CR (2.6) and the ‘q-formula’

[p − 1] + [p + 1] = [2][p]. �

Appendix C. Computation of the scalar square of highest and lowest weight vectors in
the n = 3 case

According to the general definition (3.12), the scalar square of the HWV in the Uq(sl3) module
Fp,

〈HWV(p)|HWV(p)〉 = 〈λ1λ2|λ1λ2〉 (p12 = λ1 + 1, p23 = λ2 + 1)

is given by

〈λ1λ2|λ1λ2〉 = 〈0|(qa3
3

)λ2
(
a1

1
′)λ1

(
a1

1

)λ1
(
qa3

3
′)λ2 |0〉

= q2λ2〈0|(a1
1
′)λ1

(
a3

3

)λ2
(
a3

3
′)λ2

(
a1

1

)λ1 |0〉 (C.1)

where

q[p12 + 1]a3
3
′ = q̄

1
2 a2

2a
1
1 − q

1
2 a2

1a
1
2 (C.2)

q̄[p23 + 1]a1
1
′ = q̄

1
2 a3

3a
2
2 − q

1
2 a3

2a
2
3 . (C.3)

We shall prove (3.34) in four steps.

Step 1. The exchange relation

a3
3a

3
3
′ = [p23][p13]

[p23 − 1][p13 − 1]
a3

3
′
a3

3 + B1a
3
1 + B2a

3
2 (C.4)

where

q
3
2 [p12 + 1]B1 = q̄p23[p13 + 1]a2

3a
1
2 − q̄p13a2

2a
1
3

(C.5)
q

1
2 [p12 + 1]B2 = q̄p13a2

1a
1
3 − q̄p23[p13 + 1]a2

3a
1
1

obtained by repeated application of (2.29), implies

a3
3

(
a3

3
′)λ2

(
a1

1

)λ1 |0〉 = [λ2][λ1 + λ2 + 1]

[λ1 + 2]

(
a3

3
′)λ2−1

a3
3

(
a1

1

)λ1
a3

3
′|0〉. (C.6)
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Proof. The last two terms in (C.4), proportional to a3
1 and a3

2, do not contribute to (C.6) since,
when moved to the right, they yield expressions proportional to a3

αa
3
3
′|0〉 (=0 for α = 1, 2).

Repeated application of (C.4) in which only the first term on the right-hand side is kept
gives (C.6). �

Step 2. The exchange relation

[pij − m]aj
α

(
ai

β

)m = [pij ]
(
ai

β

)m
aj

α − qεβα(pij−m+1)[m]
(
ai

β

)m−1
ai

αa
j

β (C.7)

which is a consequence of (2.29), implies

a3
3

(
a1

1

)λ1
a3

3
′|0〉 = [p13]

[p13 − λ1]

(
a1

1

)λ1
a3

3a
3
3
′|0〉 = q̄2[λ1 + 2]

(
a1

1

)λ1 |0〉. (C.8)

Proof. Equation (C.7) is established by induction in m. Equation (C.8) then follows from the
identity q2a3

3a
3
3
′|0〉 = [2]|0〉.

�

Step 3. Applying λ2 times steps 1 and 2 one gets

q2λ2
(
a3

3

)λ2
(
a3

3
′)λ2

(
a1

1

)λ1 |0〉 = [λ2]![λ1 + λ2 + 1]!

[λ1 + 1]!

(
a1

1

)λ1 |0〉. (C.9)

Step 4. Equations (3.19), (C.7) and (2.29) imply,(
a1

1
′)(

a1
1

)λ1 |0〉 = [λ1][λ1 + 1]
(
a1

1

)λ1−1|0〉; (C.10)

as a result,

〈λ10|λ10〉 = 〈0|(a1
1
′)λ1

(
a1

1

)λ1 |0〉 = [λ1]![λ1 + 1]!. (C.11)

The last two steps are obvious.
An analogous computation gives the same result (3.34) for the scalar square of the LWV

〈−λ2 − λ1|−λ2 − λ1〉.
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[32] Fröhlich J and Kerler T 1993 Quantum Groups, Quantum Categories and Quantum Field Theory (Lecture Notes

in Mathematics vol 1542) (Berlin: Springer)
[33] Fulton W 1997 Young Tableaux: With Applications to Representation Theory and Geometry (New York:

Cambridge University Press)
[34] Furlan P, Hadjiivanov L K and Todorov I T 1995 Canonical approach to the quantum WZNW model ICTP

Trieste and ESI Vienna Preprint IC/95/74, ESI 234



Quantum matrix algebra for the SU(n) WZNW model 5529

[35] Furlan P, Hadjiivanov L K and Todorov I T 1996 Operator realization of the SU(2) WZNW model Nucl. Phys.
B 474 497–511 (Preprint hep-th/9602101)

[36] Furlan P, Hadjiivanov L K and Todorov I T 1997 A quantum gauge group approach to the 2D SU(n) WZNW
model Int. J. Mod. Phys. A 12 23–32 (Preprint hep-th/9610202)

[37] Furlan P, Hadjiivanov L K and Todorov I T 2001 Indecomposable Uq(sln) modules for qh = −1 and BRS
intertwiners J. Phys. A: Math. Gen. 34 4857–80 (Preprint hep-th/0012224)

[38] Furlan P, Hadjiivanov L K and Todorov I T 2003 Chiral zero modes of the SU(n) WZNW model J. Phys. A:
Math. Gen. 36 3855–76 (Preprint hep-th/0211154)

[39] Furlan P, Sotkov G M and Todorov I T 1989 Two-dimensional conformal quantum field theory Riv. Nuovo
Cimento 12:6 1–202
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